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Abstract We analyse transition potentials, i.e. potentials exhibiting limiting invene- 
square behaviour Y ( r ) 2 ’ a r r 2  in non-relativistic quantum mechanics using the techniques of 
supersymmetry. For the range - a  6 a < :, the eigenvalue problem becomes ill defined 
(since it is not possible to choose a unique eigenfunction based on square integrability and 
boundary conditions). It is shown that supersymmetric quantum mechanics CSUSYQMI provides 
a natural presaiption for a unique derermination of the spec”. Inreresdngly, our SUSYQM- 

based approach picks out the same ’less singular’ wavefunctions as the conventional approach 
and thus provides a simple justification for the usual practice in the literature. l b o  examples 
(the Poschl-Teller I1 potential and a two-anyon system on the plane) have been worked out for 
illustrative purposes. 

Transition potentials in non-relativistic quantum mechanics are defined by 

limr*V(r) = a 
r-0 

with a finite non-zero a [l]. For a :, the eigenvalue problem is well defined an can be 
solved by conventional means. For 01 < -a, both independent solutions of the Schrodinger 
differential equation are square integrable at the origin and there is no mechanism available 
to select any specific linear combination. 

However, for the intermediate range -+ < 01 < 9 ,  transition potentials exhibit a very 
interesting behaviour. This range corresponds to the so-called ‘limit-circle’ case in the 
literature [l] and one has to specify another real number c = Iirn,+o($’(r)/+(r)) in order 
to make the Hamiltonian formally self-adjoint. Here, the requirement of square integrability 
is not sufficient to determine the eigenvalues. Even with the stronger condition that the 
wavefunction must vanish at the origin (c = co), the non-uniqueness still persists, albeit for 
a smaller range of 01 given by -a < a c 0. For values of a in this interval, eigenvalues are 
not well defined in the absence of further assumptions. This lack of uniqueness arises 
from the fact that both linearly-independent solutions of the Schrodinger equation are 
well defined near the origin and the condition of square integrability does not help us 
in discarding one of them. In such cases, it is customary [l] to force the coefficient of the 
term with the smaller power of r to vanish. This conventional approach of retaining the 
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'less singular' wavefunction then leads to the determination of eigenvalues and well-defined 
eigenfunctions. Frank et a1 111, in  their comprehensive study, justified the above choice 
through a regularization procedure. Specifically, the potential is first made regular in a 
small neighbourhood of the singular point with a radius y .  After matching the solutions at 
the boundary and taking the limit y + 0, the less singular wavefunction is selected. 

For any spheridly-symmetric potential in three dimensions, an u/r2 term arises from 
the angular-momentum term in the Hamiltonian. The requirement of single valuedness 
constrains the coefficient of (Y to be positive. However, in two-dimensional quantum- 
mechanical systems, angular momentum can take any real value and, thus, the problem of 
indeterminacy is relevant to the quantum mechanics of anyons [2] .  The problem is also 
relevant for many known physically-interesting one-dimensional potentials (Rosen-Morse, 
Eckart, Poschl-Teller, etc) which have an r-' behaviour at the origin. 

In this paper, we provide an alternative way for determining eigenvalues in the critical 
range -a < (Y c $. Our method is based on the supersymmetric approach to quantum 
mechanics [3]. The key idea is that in situations in which the eigenfunctions of a potential 
V- are not unambiguously determined, the supersymmetric partner potential V+ has no such 
problem. Thus, solving for V+ first and then using the degeneracy relation, one can solve 
the eigenvalue problem for the potential V-. Interestingly, we find that our approach leads 
to the same answer as the one stated in [l]. Hence, this paper provides an alternative 
justification for the prescription of choosing the 'less singular' solution, which obviously 
works. 

To be complete, we give a brief review of supersymmetric quantum mechanics 
(SUSYQM). For a detailed description of SUSYQM, we refer the reader to 131. We use 
examples of the Poschl-Teller potential and that of a two-anyon system to describe how 
SUSYQM provides a method for resolving the indeterminacy mentioned earlier. 

SUSYQM is characterized by a superpotential W and a pair of linear operators A and At 

Combining these operators, we can define two Hamiltonians 

We have set A = 2m = 1. The potentials V+ and V- are called supersymmetric partner 
potentials. The eigenstates of the Hamiltonians H- and H+ are $rL-) and @A+), respectively. 
The @;*) satisfy the eigenvalue equations 

ff-$rA-) = E(-)@(-)  n n  H+ @" (+) = E(+)@(+), " "  (5) 

If the ground state of H- has zero energy, i.e. E$-) = 0, then supersymmetry is said to be 
unbroken and one has A@$-) = 0. It then follows from equation (1) that 
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For unbroken supersymmetry, one needs @;-I or l/$;-) to be an acceptable wavefunction, 
i.e. it must be quadratically integrable and satisfy correct boundary conditions. For a finite 
domain, the wavefunction must vanish at the end points. For a normalizable well-defined 
@;-I, one gets the energy-degeneracy relation 

EAT), = EA*). (7) 

@A;’, = A’$A+). (8) 

The corresponding eigenfunctions of H- and H+ are related by 

The applicability of SUSYQM to lift the ambiguity in the determination of eigenvalues 
and eigenfunctions that plague transition potentials can be appreciated from the following 
discussion. If the superpotential W ( r )  is given by -(Z + I ) / r  near r = 0, then potentials 
V-(r)  and V+(r)  are of the form l(Z + I)/? and (1 + 1)(1 + Z)/r’ near r = 0. Their 
wavefunctions ire given by linear combinations [ c IF f ( l  + O(r)) + czr‘+’(l+ O(r))l and 
[~‘,r-‘-~(l+O(r))+c~r~+’(l+O(r))], respectively. For -4 < I < f, which correspondst to 
the problematic range -$ < a < for V-, both solutions are square integrable. However, 
in the above range [-f < 1 < 41,  the eigenvalue problem for V+ is well defined and 
one can determine a unique wavefunction $(+). A proper wavefunction (and from it the 
eigenvalues) for V- can then be obtained by applying operator At on the solution of V+ as 
shown in equation (8). In what follows, we will use two examples to explicitly describe 
the working of our approach. 

Example (a): The. Piischl-Teller potential. Let us consider the Poschl-Teller II 
superpotential 

W(r) = Atanhr - Bcothr (0 6 r < CO). (9) 

For A P B ,  the above superpotential corresponds to a case of unbroken SUSY. The 
corresponding supersymmehic partner potentids are given by 

V-(r)  = -A(A + 1) sech’r + B(B - 1) cosech’ r + (A - B)’ 

V+(r) = -A(A - 1) sech’r + B(B + 1) cosech’ r + (A - B)’. 
(10) 

Without loss of generality$, we will assume - 4  < A < CO and 4 6 B c CO. To clearly see 
the ambiguity in the eigenvalue problem, we proceed with the analysis of the Schrodinger 
equation. The time-independent Schrodinger equation for V- (r) is given by 

- ( A  - B)’ $(-)(r) = 0. (11) 1 -+[E+ & - )  A(A + 1) - B ( B  - 1) 
dr2 cosh’ r sinh’ r 

With a change of variables y = -sinh’r and @ ( y )  = (I  - y)-(’/2)A(y)(’~z)su(y), 
equation (1 1) can be cast in the form of a hypergeomehic equation, i.e. 

(12) y(1 - Y ) u ” + [ ( ~  + B )  - (1 - A +  B ) Y ] u ’ -  ~ E u  = O .  

t The range -: 6 OL c 9 also corresponds to -4 c I 6 -4; however, one can show that they also have exactly 
the same solutions for $r- ) ( r ) .  Thus. by just limiting ourselves to -f < 1 < f. we can generate all solutions for 
the range -a < a < t .  
$ Since the potential L ( r )  is a function of A(A + 1) and B ( B  - I ) ,  it has same value for A = -1 & < and 
B = 5 zt < far m arbitrary real number I. We rue choosing A = -f + { md B = 1 +I. I 
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The general solution is 

+I(-)@) = cosh-A r [ q  sinhBrF(a',.b', c'; -sinh2r) 

+ cz sinh('-B) rF(a' + 1 - c', b' + 1 - c', 2 - c'; - sinh' r ) ]  (13) 

where the constants a', b', and c' are given by 

a' = f(B - A + Q') b' = B - A - Q') Z( 

d = B + f  and Q ' = J ( B - A ) Z - E ,  

Near the point r - 0, the solution,reduces to 

+(-)(r)S'[clrB(l + o(r)) + czr('-B)(l + o ( r ) ) l .  (15) 

Normalizability requires that @) be less singular than 1/fi near the origin. Thus, for 
B > $, the wavefunction becomes non-normalizable unless c? = 0. With cz = 0, a 
subsequent constraint coming from the requirement of the vanishing of the wavefunction at 
infinity (which is demanded by the normalizability) suffices to determine the eigenvalue E in 
terms of the parameters A and B. However, if $ < B < i, both terms of the wavefunction 
for the Hamiltonian H- are well defined near r - 0 (see (15))t and, hence, no constraints 
are placed on their coefficients from requiring normalizability. In such cases, we solve the 
eigenvalue problem for Vt instead. The wavefunction for the Hamiltonian H+ near the 
origin is given by 

+(+)(r)Z?[~lr(B+')( l  + ~ ( r ) )  +&-')(I + ~ ( r ) ) ] .  ' (16) 

Clearly, normalizability of *ct) for B < $ requires that we set = 0. To determine the 
eigenvalues of H+, we have to study the behaviour at infinity and, for that, one uses an 
alternative asymptotic form of the hypergeometric function 

This leads to 

where the constants a, b and c are given by 

a = i ( B  - A + 2 +  Q) b = $ ( B  - A + 2 -  Q) 
(19) 

c = B + $  ~ and Q =  Jm. 
t If B is exactly equal to $, then +(-)(r)~'r1~[cr(1 t B(r ) )  + c2logr(l +O(r ) ) l .  In this c ~ s e  bath terms 
nre normalizable in the vicinity of the origin and. hence, eigenvalues w n o t  be determined unambiguously in the 
absence of further assumption. 
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Here, d = E + ( A  - B - 2)’ - (A - E ) * .  The second term on the right-hand side of 
equation (18) must vanish to have a well-defined bound statet. This can be achieved if 
either a or ( c  - b) is equal to a negative number (say 4). zf a = -k, then the eigenvalues 
are given by 

El-) = ( A -  B I Z -  [ A  - B -2k-21’ k =0, 1 ,...,, n. 

The integer n gives the number of bound states that the potential will hola and is related 
to the parameters A and B. It is the largest integer satisfying Q > 0, i.e. A - B - 2 z 2n. 
This condition also ensures that exp[- s’ W(r’) dr’] is a well-defined function and, hence, 
one has a supersymmetric situation. Eigenvalues for Hamiltonian H- will .be the same as 
those for H+ except that H- will have an additional state (ground state) with zero energy. 
The eigenfunctions of H+ are.given by [4] 

$(+) (r)  = (sinh r)(l+B) (cosh r)-(A-l) p(B+(’/2).-A+(’/2))(MSh,2r). 
k 

The eigenfunctions of the Hamiltonian H- will be given by applying the operator At (defined 
in equation (1)) on the function +(+). Near the origin, +(+) is given by 

+(+)(,.)‘GorB+l, 

Now operating At on +(+) lowers the power of r by unity and, hence. 

* ( - ) ( r ) Z 0 P .  

Comparing this expression with equation (15), we see that SUSYQM automatically chooses 
the term with higher power of r .  which is consistent with the prescription of [I]. Hence, 
the eigenvalues obtained will also be the same. Thus, this method provides a justification 
for the usual practice of dropping the term with lower power of r in case of ambiguity. 

Instead, if the second condition holds, i.e. c - b = -k then the eigenvalues are given 
by Ei-) = ( A  - - [ A  + B +2k+ 112, k = 0, 1, . . . , n. The condition on A, for n-bound 
states in the second case, obtained by requiring that Q > 0, is given by A c - B  - 2n - 1 
which cannot be satisfied for any n as we have assumed -f < A c w and $ < B c CO. 

Example (6): Anyons in a spherically-symmetric potential. Here we consider a system of 
two anyons and proceed along similar lines as those above. The motion can be divided into 
centre-of-mass motion and the dynamics of the relative coordinate [2,5]. The Schradinger 
equation for the relative coordinate is then given by [5] 

where 8 is the statistics parameter and 2p = 1 .  Substituting $ = ( 4 / f i ) ,  we get 

- 4”+ [(U’ - : ) / r 2  + (V(r) - E)]$  = 0 (21) 

t We are assuming Q > 0. otherwise the first term in equation (18) will have to vanish instead. In either case, we 
will have the same answer since F(u. h, c: z) = F(h.  U .  c: 2 ) .  
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where v = ( m + ( @ / r ) ) .  Equation (21) can now be interpreted as a one-dimensional equation 
where the domain of the variable r is given by 0 < r c CO. Now, the important question 
is the boundary condition. This has been recently analysed by Roy and Tarrach [5] who 
conclude that more general boundary conditions #(O) = c$(O), c # 0, CO are forbidden 
because they break supersymmetry. It is interesting to observe that in the three-dimensional 
monopole problem, the above mentioned boundary conditions are also extremely important 
[6]. If we ask for the overlap of the two particles to be zero, we require $b + 0 as 
r + 0. This is equivalent to saying that the configuration space has been reduced to 
RZ x (R2 - [O})/Zz. For 4, that would imply that it goes to zero faster than .&. 

However, if we only stipulate a need of square integrability, it implies that 4 be less 
singular than I/*. The solutions of equation (21) are then of the form rl+' and r-l where 
1 is given by I @ +  1) = (U* - $). One can show that for I > or I < -4, only one of the 
above two solutions is square integrable near the origin and this leads to the unambiguous 
determination of eigenvalues and eigenfunctions. However, if -4 < 1 < 4 then both 
solutions vanish at the origin and are also square integrable. Hence, it is not possible to 
choose one over the other. For the anyon problem, one starts with a superpotential of 
the form [5] W ( r )  = ( ( I  + l ) / r )  + f(r) where f ( r )  has to be suitably chosen to give the 
required spherically-symmetric potential. One can easily see that in the partner Hamiltonian, 
the singular term is of the form ( l+  1)(2 +2) /rZ and, hence, just like the Poschl-Teller case, 
there will be no ambiguity in this sector. As has been worked out in the previous example, 
the application of the degeneracy theorem will then give the less singular wavefunction in 
the H- sector. 

Thus, we find that the SusYQM-based formalism gives a clear-cut way of finding the 
eigenvalues and eigenfunctions of transition potentials in the region of ambiguity. Also, the 
eigenfunctions turn out to be of the same 'less singular' type that is commonly chosen in 
the literature [ 11. 

' 2. 
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